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I. INTRODUCTION

This report describes progress made under the CSRF
project Current Topics in Density Functional Theory.
Density functional theory (DFT) is a quantum mechan-
ical technique for computing the energetics of molecules
and materials. DFT is unique among atomistic simula-
tion techniques in combining a high accuracy approxima-
tion to the quantum mechanics describing the chemical
bonding in materials with computationally tractible solu-
tions. This combination makes it particularly important
and relevant for Sandia’s stockpile stewardship mission,
a large part of which involves insuring future material
performance without nuclear testing. DFT techniques
have already made important contributions to Sandia’s

DP programs. However, to have greater and wider im-
pact at Sandia, DFT techniques need to have increased
accuracy, they need to provide this accuracy with in-
creased speed, and they need to have increased range
as to the problems and conditions they can contribute to.
The goal of this project is to achieve these improvements
to DFT.

This report will detail progress made in each of these
areas. We will begin by describing the accuracy of ex-
isting density functionals and how the Exact Exchange
functionals can improve upon this. We will then dis-
cuss our attempts to improve the speed of DFT with
density matrix-based methods that replace the matrix
eigenproblem with techniques that determine the den-
sity matrix directly from the electronic Hamiltonian. Fi-
nally, we will describe our efforts to broaden the range of
problems that may be treated with DFT, focusing par-
ticularly on the implementation of configurational biased
Monte Carlo techniques for liquid densities and liquid-
vapor coexistance curves.

II. OVERVIEW OF DENSITY FUNCTIONAL THEORY

Density functional theory (DFT) dates from the work
of Thomas, Fermi, and Dirac (1–3) describing the ground
electronic state of an atom, molecule, or material in terms
of its electronic density ρ(r)

E[ρ] = T [ρ] + vn[ρ] + vJ [ρ] + vx[ρ] + vc[ρ], (1)

where T is the kinetic energy of an electron, vn is the
nuclear attraction each electron feels, vJ is the electron-
electron repulsion, vx is the “exchange” interaction that
insures the fluid of electrons act as a Fermi-Dirac fluid,
and vc is the correlation energy. The determination of
the kinetic energy functional was a major challenge for
the development of DFT approaches. In 1965, Kohn and
Sham (4) re-introduced one-particle orbital eigenfunc-
tions to DFT as a way of more accurately computing
the kinetic energy functional, and the accuracy of the
resulting calculations have been such that these calcula-
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FIG. 1 Flow chart of where time is spent in a DFT calcula-
tion.

tions have dominated DFT calculations ever since. The
resulting equations have the form

(t+ veff [ρ])φi = εiφi, (2)

where t is the kinetic energy operator,

tφi = − h̄2

2me
∇2φi, (3)

and veff is the effective potential,

veff [ρ] = vn + vJ [ρ] + vx[ρ] + vc[ρ], (4)

composed of the nuclear attraction potential vn, the
electron repulsion potential vJ , the exchange potential
vx, which insures that the density behaves according to
Fermi-Dirac statistics, and the correlation potential vc,
which subsumes all of the remaining many-body interac-
tions. These equations can be written in the form of a
matrix eigenvalue equation

HC = CΛ (5)

CT C = I. (6)

The columns of C and diagonal elements of Λ are the
orbital eigenvectors describing the electronic wave func-
tion and corresponding orbital energies for the first Nocc

(typically Nocc = Nel/2) occupied orbitals. We will find
it convenient to define the (one-particle) density matrix
D as

D = CCT (7)

Figure 1 shows a diagram of the computational steps
that comprise a DFT calculation. There are two time-
consuming steps. There is a Hamiltonian formation step
that forms the Kohn-Sham Hamiltonian operator for a
given system for a specified density matrix D, and there
is a Hamiltonian solution step that solves the eigenprob-
lem associated with that Hamiltonian and forms an up-
dated D matrix; these two steps are iterated until self-
consistency is reached. Formally, the Hamiltonian forma-
tion step scales O(N4) for a system of size N . However,
intelligent Hamiltonian formation steps have reduced the
scaling of this step to roughly O(N) for large systems.
The eigenproblem formally scales O(N3), and this scal-
ing now dominates the calculation time for large systems.

Figure 2 shows the timings of the Quest DFT program.
The red and the blue lines show the timings for Hamilto-
nian formation during the setup phase and during each
iteration, respectively. The green line shows the timings

FIG. 2 Timings for the Quest DFT program for Si crystals
with differing number of atoms. The red and the blue lines
show the timings for Hamiltonian formation during the setup
phase and during each iteration, respectively. The green line
shows the timings for the solution of the eigenproblem.

for the solution of the eigenproblem. Beyond roughly 150
atoms, the eigensolve dominates the problem.

The first DFT functionals with qualitative accuracy
arose from Ceperley and Alder’s Quantum Monte Carlo
(QMC) calculations for the electron gas (5), which were
fitted to DFT correlation functionals by Vosko et al. (6),
using a Slater functional (7) interaction. This functional
used Local Density Approximation (LDA) to write the
exchange-correlation energy as a functional of the local
electronic density at each point in space:

ELDA
xc =

∫
F [ρ(r)]ρ(r)dr. (8)

These functionals were later replaced by functionals using
the Generalized Gradient Approximation (GGA) (8–10)
that wrote the functionals in terms of not only the local
density, but also the gradient of that density, at each
point in space:

EGGA
xc =

∫
F [ρ(r),∇ρ(r)]ρ(r)dr. (9)

The GGA funtionals themselves were later replaced by
Hybrid Functionals (11; 12) that took a linear combina-
tion of the exchange-correlation operator from GGA with
the exact exchange matrix from Hatree-Fock (HF) the-
ory. This combination provided greater accuracy, but it
came at the loss of some theoretical rigor, as density func-
tionals are functionals of the electronic density, whereas
the HF exchange matrix is a functional of the molecular
orbitals.

Table I shows the performance of different DFT func-
tionals on the G2 themochemical test suite, a set of
small molecules chosen by Pople et al. (13) for which
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TABLE I A comparison of the errors on the G2 themochemi-
cal test suite of small molecules for different DFT functionals.
Shown is the LDA functional SVWN, the GGA functionals
BLYP, BP86, BPW91, and the hybrid functionals B3LYP,
B3PW91, and B3P86. Data for the table from reference (13).

Functional Year Avg. Error Max. Error

SVWN 1980 39.60 93.80

BLYP 1988 4.69 15.30

BP68 1986 10.50 26.10

BPW91 1991 5.20 19.10

B3LYP 1993 2.43 8.42

B3PW91 1993 2.59 7.40

B3P86 1993 7.84 24.60

high-quality themochemical data was available. The
LDA functional shows an average accuracy of roughly
40 kcal/mol. The GGA functionals do substantially bet-
ter, with an average accuracy of 5-10 kcal/mol. The best
of the hybrid functionals have an average accuracy of
roughly 2.5 kcal/mol.

In this discussion it is worth considering how much en-
ergy is sufficient to describe materials chemistry. A useful
yardstick is that a C− C chemical bond provides roughly
100 kcal/mol energy, and that a typical molecule will con-
sist of several bonds of this strength. A second yardstick
is that in computing the rates of chemical reactions, an
error of 1.5 kcal/mol in computing an activation barrier
leads to roughly an order of magnitude error in comput-
ing the rate. We will thus take the somewhat arbitrary
figure of 1.5 kcal/mol as our measure of chemical accu-
racy, as calculations that can produce this level of accu-
racy will have smaller than a 1% error for molecules with
multiple bonds, and should lead to preditions of rates of
reactions that are correct within an order of magnitude.

III. INCREASING THE ACCURACY OF DFT

A. Exact exchange density functionals

The goal of the exact exchange (EXX) method (14–18)
is to obtain density functionals from orbital-dependent
energy functions. These methods have allowed the gen-
eration of exchange functionals that derive from the HF
exchange energy expression and yet are true density func-
tionals. These methods can generate functionals that
have the advantages provided by hybrid functionals, but
with greater theoretical rigor.

There has been considerable hope that EXX meth-
ods will help solve the band gap problems that plague
HF and DFT. In HF theory, occupied orbitals are prop-
erly self-interaction corrected, whereas unoccupied or-
bitals are not (19), leading to unnaturally high energies
for the unoccupied orbitals, and a band gap that is too
large. In contrast, in DFT both the occupied and un-

occupied orbitals are only self-interaction corrected to
the extent that the DFT exchange operator cancels the
self-Coulomb interaction. This cancellation is typically
imperfect, and DFT typically displays band gaps that
are too small, although the fact that both the occu-
pied and unoccupied orbitals display similar errors yields
band gaps that are in general closer to the correct values
than those from HF theory. The methods based upon
EXX are rigorously self-interaction corrected, and, at
the same time, have a consistent treatment of occupied
and unoccupied states, giving hope that these approaches
will combine the strengths of HF and DFT approaches.
Preliminary studies on the computation of band gaps
(18; 20; 21), and, in particular, those including a corre-
lated orbital-dependent functional (22; 23), suggest that
this hope is well-founded.

1. Exact exchange methodology

The KS equations take the form of eq (2). In the
EXX method the potential veff is determined that mini-
mizes some objective energy functional via the variations
δE/δveff . This energy functional is typically taken as
the HF energy, but in the current work we explore other
choices for this functional as well.

The main idea behind EXX is to use chain rule type
derivatives to enable proper density functionals to be con-
structed from orbital dependent energy functionals:

δE

δveff
=
∑

i

δE

δφi

δφi

δveff
. (10)

We follow Yang and Wu (24), who define a particularly
elegant technique whereby the EXX is expanded in a set
of Gaussian functions g(r) about a reference potential
v0(r)

veff(r) = vn(r) + v0(r) +
∑

`

b`g`(r). (11)

Yang and Wu take the reference potential v0(r) to be the
Fermi-Amaldi potential

v0(r) =
N − 1
N

∫
ρ0(r′)
|r − r′|

dr′, (12)

which turns out to be a very good approximation to the
proper EXX potential. Because the reference potential
is independent of veff , the derivative may be obtained
by minimizing the energy functional with respect to the
expansion coefficients b` via

δE[{φi}]
δveff

=
∑

`

δE[{φi}]
δb`

(13)

=
∑

`

∑
i,a 6=i

∫
δE[{φi}]
δφi(r)

φa(r)dr
〈φa |g`|φi〉
εi − εa
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FIG. 3 The first and second natural orbitals for H2.

FIG. 4 The first and second natural orbitals for He.

In the special case of E[{φi}] equal to the HF total en-
ergy, this equation simplifies to (24)

δEEXX [{φi}]
δveff

=
∑

`

∑
i,a 6=i

∫ 〈
φi

∣∣FHF
∣∣φa

〉 〈φa |g`|φi〉
εi − εa

(14)
where FHF is the Hartree-Fock Fock operator.

We note, however, that the EXX method is not limited
to using the HF energy functional. The next section de-
scribes a new breakthrough that has come from our work
in using a multiconfigurational approach to introduce not
only exact exchange but also major contributions from of
correlation energy.

2. GVB and EXX-GVB

The HF wave function contains only a single electronic
configuration: in the HF description of H2 both electrons
occupy the bonding orbital φg, shown in Figure 3, and
in the HF description of He both electrons occupy the
orbital φ1s, shown in Figure 4. This single configura-
tion limits the ways the wave function can be variation-
ally minimized and leads to, for example, the well-known
problem of the HF description of H2 dissociating to the
wrong limits, shown in Figure 5. It is possible to dis-
sociate H2 using an unrestricted HF (UHF) description,
but the resulting wave function contains spin contamina-
tion and is thus no longer an eigenfunction of the spin
S2 operator.

The GVB-PP wave function (25) adds a variationally

FIG. 5 A comparison of H2 dissociation using the one-
configuration HF wave function (blue circles) and the two-
configuration GVB-PP wave function (green circles). Only
the GVB wave function dissociates to the correct limit.

determined amount of another electronic configuration
that gives the overall wave function greater freedom. In
H2, the GVB-PP wave functions adds the antibonding
orbital φu, shown in Figure 3, which allows the two elec-
trons to build in some static electron correlation and to
dissociate properly, shown in Figure 5. In He, the GVB-
PP wave function adds the second atomic orbital φ2s,
shown in Figure 4, which allows the two electrons to build
in some static electron correlation and avoid each other
to some degree. In the GVB terminology, the orbitals φg

and φu, or φ1s and φ2s, are the first and second natural
orbitals of a GVB pair.

For two electron systems with one GVB pair, the GVB-
PP wave function takes a particularly simple form. For
the purposes of our discussion, we will refer to the first
and second natural orbitals of the GVB pair as φa and
φb.

ΨGV B = (caφ2
a − cbφ

2
b)αβ. (15)

φa and φb are spatial orbitals, and α and β are the corre-
sponding spin components. The coefficients ca and cb are
determined by solving the 2×2 configuration interaction
(CI) matrix:

HC = ΛC (16)

where

H =

(
Ea Kab

Kab Eb

)
. (17)

The CI matrix elements are given by

Ea = 2haa + (aa|aa) (18)
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Eb = 2hbb + (bb|bb) (19)

Kab = (ab|ab) (20)

The one-electron terms hij are given by

hij =
∫
φi(r)h(r)φj(r)dr (21)

and h contains the kinetic-energy and nuclear attraction
terms. The two-electron terms (ij|kl) are in chemist’s
notation (see, for example, reference (26)) and are given
by

(ij|kl) =
∫
φ∗i (r1)φj(r1)φ∗k(r2)φl(r2)

|r1 − r2|
d3r1d

3r2. (22)

After the CI coefficients are determined, the GVB-PP
energy may be determined as

EGV B = c2aEa + c2bEb + 2cacbKab + EZZ′ (23)

where EZZ′ is the nuclear repulsion energy.
In the current work we take eq (23) to be the objective

function to be optimized via eq (14). The derivatives
δEGV B/δb` are straightforward given the relations∫

δEGV B

δφa(r)
φj(r)dr = c2a(haj + (aa|aj)) + cbca(ba|bj),

(24)∫
δEGV B

δφb(r)
φj(r)dr = c2b(hbj+(bb|bj))+cbca(ba|ja). (25)

3. Results on Band Gaps of He and Be

In KS DFT, only the highest occupied eigenvalue has
a true physical interpretation, corresponding to the neg-
ative of the lowest ionization energy. In reference (27),
Savin, Umrigar and Gonze derive a nearly exact Kohn-
Sham potential from quantum Monte Carlo (QMC) cal-
culations, and demonstrate that the resulting KS eigen-
values reproduce values from experiment (28) and ex-
plicit Hylleraas coordinate calculations of the excited
states (29; 30). The experiments and Hylleraas calcu-
lations give different values for the singlet and triplet
excited states; in contrast, the KS eigenvalues from the
QMC exchange-correlation functional yield only a single,
spin-averaged value for each state. The fact that these
values fall between the singlet and triplet energies for
each state is a remarkable result, which the authors in-
terpret as evidence that the Kohn-Sham orbitals arising
from their QMC-based Kohn-Sham potential and the ex-
act quasiparticle orbitals obey the same long-range equa-
tions to order 1/r4. For the remainder of this paper we
will take the KS eigenvalues from reference (27) to be the
“correct” values.

In the current work we report results using an EXX
functional as well as a new method (EXX-GVB) derived

TABLE II Comparison of the Helium excited state spectrum
to betwen QMC-derived KS potential (reference (27)), and
those from HF, LDA, BLYP, PBE, B3LYP, and our current
EXX approach. The final line reports the mean absolute devi-
ation (MAD) between the QMC-derived exchange-correlation
functional and the other techniques. Energies are reported in
Hartree atomic units.

State QMC HF LDA BLYP PBE B3LYP EXX

1s→2s 0.746 0.918 0.571 0.585 0.580 0.662 0.762

1s→2p 0.777 0.923 0.576 0.590 0.585 0.667 0.793

1s→3s 0.839 0.922 0.574 0.587 0.582 0.665 0.856

1s→3p 0.848 0.941 0.592 0.605 0.600 0.683 0.864

1s→3d 0.848 0.936 0.589 0.603 0.598 0.680 0.865

1s→4s 0.869 0.929 0.580 0.594 0.591 0.673 0.885

MAD 0.107 0.241 0.227 0.232 0.150 0.016

FIG. 6 Comparison of excitation energies for He atom com-
puted from the KS-DFT eigenvalues using HF, LDA, BLYP,
PBE, B3LYP, EXX, and QMC methods. The levels are color-
coded based on the excitation, shown at the right. The OEP
methods are the only ones that obtain the correct ordering of
the states, and the errors are reasonably constant across the
whole spectrum, in contrast with the other approaches.

from the GVB-PP wave function. Our results do not
display the same quantitative agreement with experiment
and Hylleraas calculations that those in reference (27) do,
our methods come with substantially less computational
expense. The accuracy of our results demonstrates that
this approach does, in fact, exhibit the correct long-range
behavior, and provides hope that, with an appropriate
choice of a correlation functional, inexpensive DFT calcu-
lations might yield the quantitative accuracy that Savin,
Umrigar, and Gonze’s QMC-based KS-DFT calculations
provided.

Table II reports a comparison of Helium excitation
energies to the QMC-derived exchange-correlation func-
tional as well as to HF and to standard B3LYP func-
tionals. We report the mean absolute deviation (MAD)
between the QMC-derived values and those from HF and
the DFTs. The HF excitation energies differ on the av-
erage by 0.107 h, the LDA, BLYP, and PBE values differ
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TABLE III Comparison of the Beryllium excited state spec-
trum between QMC-derived KS potential (reference (27)),
and those from HF, LDA, BLYP, PBE, B3LYP, and our cur-
rent EXX approach. The final line reports the mean abso-
lute deviation (MAD) between the QMC-derived exchange-
correlation functional and the other techniques. Energies are
reported in Hartree atomic units.

State QMC HF LDA BLYP PBE B3LYP EXX

2s→2p 0.133 0.313 0.129 0.130 0.132 0.180 0.130

2s→3s 0.244 0.312 0.205 0.198 0.204 0.230 0.240

2s→3p 0.269 0.325 0.210 0.204 0.210 0.236 0.267

2s→3d 0.283 0.331 0.220 0.214 0.220 0.246 0.278

2s→4s 0.296 0.321 0.211 0.206 0.212 0.238 0.292

MAD 0.075 0.050 0.055 0.050 0.038 0.004

FIG. 7 Comparison of excitation energies for Be atom com-
puted from the KS-DFT eigenvalues using HF, LDA, BLYP,
PBE, B3LYP, EXX, and QMC exchange-correlation function-
als.

by 0.241–0.273 h, and the B3LYP function has a MAD
of 0.15 h. Our EXX values differ by only 0.016 h, nearly
a factor of 10 better than the best of the standard DFTs.
Moreover, the EXX values differ from the QMC values
by almost a constant value of 0.016 h across the entire
spectrum, whereas the LDA, GGA, and HF values fluc-
tuate much more about their average deviation. These
spectra are shown graphically in Figure 6. This figure il-
lustrates that not only are the EXX values better on the
average, but each individual excitation level differs from
the corresponding exact value by a near-constant shift.

Table III reports a similar comparison for the Beryl-
lium excitation energies. On the average the HF exci-
tation energies differ by 0.075 h, the LDA, BLYP, and
PBE values differ by 0.050-0.070, and the B3LYP values
differ by 0.038 h. In contrast, the EXX values differ by
only 0.004 h, nearly a factor of ten smaller average differ-
ence than the best of the standard DFTs. Moreover, as
was seen in He, the EXX excitation energies differ from
the QMC values by a constant shift, whereas the LDA,
GGA, and HF values fluctuate much more about their
averages. These spectra are shown graphically in Figure

TABLE IV Comparison of HF, GVB, BLYP, B3LYP, and
EXX-GVB energies (in Hartree atomic units) versus H—H
(in Angstrom) for H2 dissociation.

R/Å HF GVB EXX-GVB BLYP B3LYP

0.6 -1.1139 -1.1286 -1.1256 -1.1479 -1.1592

0.7 -1.1305 -1.1476 -1.1441 -1.1663 -1.1771

0.8 -1.1284 -1.1484 -1.1447 -1.1663 -1.1765

0.9 -1.1165 -1.1398 -1.1359 -1.1566 -1.1662

1.0 -1.0995 -1.1265 -1.1226 -1.1421 -1.1510

1.2 -1.0594 -1.0956 -1.0915 -1.1079 -1.1150

1.4 -1.0186 -1.0666 -1.0626 -1.0739 -1.0793

1.8 -0.9468 -1.0259 -1.0241 -1.0181 -1.0193

2.2 -0.8904 -1.0067 -1.0061 -0.9795 -0.9764

2.5 -0.8571 -1.0008 -1.0007 -0.9597 -0.9535

3.0 -0.8157 -0.9975 -0.9974 -0.9387 -0.9281

4.0 -0.7702 -0.9965 -0.9965 -0.9214 -0.9050

7, which again illustrates that not only does the EXX
perform better on the average, but that each individual
excitation value once again differs from the exact levels
by a small, nearly constant shift. We have not yet im-
plemented the EXX-GVB approach for more than two
electrons, and thus do not have Be results with this ap-
proach.

We believe it significant that for the He and Be spec-
trum the EXX excitation levels differ from the exact lev-
els by a nearly constant amount. Clearly, the HF descrip-
tion on which our EXX is based omits the correlation en-
ergy, and the high accuracy of the excitation levels and
the regularity of the error gives hope that simple mod-
els for the electron correlation might further reduce the
overall error.

4. Results on Dissociation of H2

Table IV shows energies (in Hartree atomic units)
for dissociating H2 as a function of H—H distance, in
Angstroms. For H2, the OEP-HF results are identical
to the HF results, and thus exhibits the same difficul-
ties dissociating that the HF wave function does. BLYP
also dissociates to the incorrect limit, although it is closer
to the correct result than the HF or EXX results. The
GVB and EXX-GVB methods dissociate to nearly the
correct limit (the error shown here is predominantly due
to finite basis set size effects). The GVB and EXX-GVB
methods do not yield exactly the same energies because
the orbitals in the EXX-GVB method are slightly con-
strained by the requirement that they come from a Kohn-
Sham equation. This is similar to the energy differences
seen between the HF and EXX method (for example, in
reference (24)), and was explained particularly well by
Kummel and Perdew in reference (10). These data are
shown graphically in Figure 8.
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FIG. 8 A comparison of the dissociation of H2 using HF,
GVB, EXX, EXX-GVB, and BLYP methods.

B. Hybrid DFT-QMC Calculations

We are also pursuing the use of quantum Monte Carlo
(QMC) techniques as a way of improving the accuracy of
DFT calculations. QMC methods take a very different
approach to electronic structure than do DFT methods.
In DFT one simplifies the exact Hamiltonian to a solv-
able form; typically this simplification takes the form of
reducing the equations to a series of one-particle (or one-
pseudoparticle) equations. In contrast, QMC approaches
retain the exact form of the Hamiltonian, and use MC
techniques to sample the exact form rather than solving
it exactly. This enables a solution that is very nearly ex-
act, but at the expense of the slow statistical convergence
typical of MC approaches.

DFT KS wave functions are composed of a product of
one-particle states

Ψ(1, 2, . . . , Nel) = ψ1(r1)ψ2(r2) · · ·ψNel
(rNel

). (26)

QMC wave functions typically include a correlation term
that explicitly describes the electron-electron correlation
in terms of the inter-electronic coordinates, in much the
same way as the Hylleraas wave function does. The gen-
eral electron-electron correlation terms are called Pade-
Jastrow terms and have the form

U =
Nel∑
i<j

a1rij + a2r
2
ij + · · ·

1 + b1r12 + b2r212 + · · ·
(27)

ΨJastrow = eU . (28)

The overall QMC many-particle wave function then has
the form

ΨQMC = ΨDetΨJastrow (29)

where ΨDet is an antisymmetrized product wave function
made by taking the determinant of a wave function of the
form of eq (26).

The KS eigenfunctions that result from DFT calcu-
lations generally serve as an accurate guess to the one-
particle states in ΨDet, which reduces the overall problem
to one of optimizing the Jastrow parameters in eq (27).
This optimization is substantially more complicated than
one would normally assume because the objective func-
tion to be optimized involves using Monte Carlo tech-
niques to sample the many-body Hamiltonian.

We have collaborated with Cyrus Umrigar from the
Cornell Theory Center on the use of DFT calculations
as starting points for the increased accuracy of QMC
calculations. Earlier CSRF projects have helped fund
the development of the CHAMP (Cornell-Holland Abini-
tio Materials Package) program, in particular the ability
to compute materials having periodic boundary condi-
tions, which is essential to Sandia’s interests. Our current
project simply seeks tighter integration of CHAMP with
Sandia’s DFT program, in particular the Quest package.

CHAMP has several qualities that make it an ideal
choice for our research. The Jastrow optimization uses
variance (31) and energy (32) optimization, making it
substantially more efficient than other programs in cur-
rent use. Furthermore, the Monte Carlo sampling is done
using very efficient algorithms (33). Finally, the capabil-
ity for condensed phase systems mentioned above allow
materials chemistry properties to be computed.

We have begun work integrating CHAMP with Quest.
Two steps need to be achieved for this to occur. First, the
wave function, basis set, geometry, and so forth from the
DFT calculation needs to be output in a readable form.
Much of this functionality has already been incorporated
into Quest through various post-processing modules, and
this material only needs to be put into the CHAMP for-
mat. Secondly, we need to output the pseudopotentials
in an appropriate format, and to write suitable routines
in CHAMP for these pseudopotentials to be evaluated.
The pseudopotentials that CHAMP can handle limited
to non-separable forms, and this restriction recommends
using Quest above other programs in common use at San-
dia (VASP, Socorro, abinit) that require separable pseu-
dopotentials.

C. Future Directions for Increasing the Accuracy of DFT
Approaches

The EXX-GVB approach described above is very
promising, but in many ways it is unsuitable for simu-
lations of large condensed-phase materials with periodic
boundary conditions, because the enumeration of the va-
lence bonds required by the GVB wave function becomes
prohibitive. We therefore plan to use the EXX-GVB ap-
proach as a benchmark and find other approaches that
can achieve similar high-quality results in more tractible
form.
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There are several obvious choices, including the inclu-
sion of LDA and GGA correlation functionals in our OEP
optimizations. There are also other orbital-dependent
choices that we believe are promising. The Colle-Salvetti
correlation functions (34; 35) is an orbital-dependent
functional from which the density-dependent LYP GGA
density functional was derived (36). In addition to ex-
ploring the use of the LYP functional itself, we be-
lieve there are significant advantages to the Colle-Salvetti
orbital-dependent functional. The Colle-Salvetti correla-
tion functional is given by (36)

Ec = −a
∫

1
1 + dρ(r)−1/3

× (30)

(ρ(r) + bρ(r)−2/3[tHF (r)− 2tW (r)]e−cρ(r)−1/3
)dr,

which includes kinetic-energy terms tHF and tW that
normally only appear in the so-called Meta-GGA DFT
approaches, and that may improve the performance of
the functional.

Another orbital-dependent choice of a correlation func-
tional comes from many-body perturbation theory, and
is particularly attractive given Bartlett and coworkers’
success with this approach. We have already explored
the use of the second-order Moller-Plesset (MP2) method
(37), but did not find this approach to be sufficiently
accurate. However, we believe that the closely-related
Epstein-Nesbet correlation theory might meet many of
our requirements. Second-order Epstein-Nesbet (EN2)
theory is given by

Ec =
occ∑
ab

virt∑
rs

(ar|bs)(2(ar|bs)− (br|as))
Ers

ab

(31)

where the indices ab run over the occupied orbitals, the
indices rs run over unoccupied (virtual) orbitals, the
terms (ar|bs) are again in the chemist’s notation of eq
(22), and the energy Ers

ab is the energy of a wave func-
tion where two electrons are excited out of orbitals ab
into orbitals rs. EN2 has the desirable features of being
tractible, variational, size-consistent, and will hopefully
lead to proper bond-dissociation.

Finally, or plans for the hybrid DFT-QMC calculation
center around implementing the Quest pseudopotentials
in the CHAMP program. This capability will enable the
QMC approach to also be used as a benchmark in eval-
uating the performance of OEP correlation functionals,
above.

IV. INCREASING THE SPEED OF DFT

A. Density Matrix Purification

DFT consists of self-consistently solving the Kohn-
Sham equations. Figure 1 shows a diagram of where
time is spent in a DFT calculation. Essentially, there
are two time-consuming steps. There is a Hamiltonian

formation step that forms the Kohn-Sham Hamiltonian
operator for a given system for a specified density matrix
D, and there is a Hamiltonian solution step that solves
the eigenproblem associated with that Hamiltonian and
forms an updated D matrix; these two steps are iterated
until self-consistency is reached. Formally, the Hamilto-
nian formation step scales O(N4) for a system of size N .
However, intelligent Hamiltonian formation steps have
reduced the scaling of this step to roughly O(N) for large
systems. The eigenproblem formally scales O(N3), and
this scaling now dominates the calculation time for large
systems.

Figure 2 shows the timings of the Quest DFT program.
The red and the blue lines show the timings for Hamilto-
nian formation during the setup phase and during each
iteration, respectively. The green line shows the timings
for the solution of the eigenproblem. Beyond roughly 150
atoms, the eigensolve dominates the problem.

But, referring back to Figure 1 we note that one merely
uses the eigenvectors from the H solution step to form a
new density matrix.

Our work to date has focused on density matrix pu-
rification techniques (38–43) that use the facts that a
proper density matrix is idempotent, has a trace equal to
the number of electrons, and commutes with H, to refine
iteratively, or purify, an initial guess to the density ma-
trix until convergence. Similar approaches include den-
sity matrix minimization techniques (44; 45) that apply a
nonlinear conjugate gradient minimization to the eigen-
problem augmented by penalizing the idempotent con-
straint, and density matrix expansion techniques (46–50)
that expand the Fermi-Dirac distribution in a Chebyshev
series to yield the density matrix.

Density matrix purification techniques exploit the fact
that a polynomial Φ in H yields

Φ(H) = Φ(UΛUT) = UΦ(Λ)UT, (32)

i.e., the polynomial Φ does not change the eigenvectors,
and modifies the eigenvalues as Φ(λ). Therefore, Φ(H)
is a density matrix provided that

Φ(λi) =

{
1 λi < µ

0 λi > µ
, (33)

that is, Φ is an approximation to a step function centered
on µ, the chemical potential (defined as the orbital energy
below which all orbitals are occupied, and above which all
orbitals are unoccupied). In practice the polynomial Φ is
formed implicitly by repeatedly multiplying and shifting
Dj , the j-th iterative guess to the density matrix, with
itself. In the Trace Correcting Canonical Purification
Scheme (41; 42), the iterations are determined by

Dj+1 =

{
2Dj −D2

j Tr[Dj ] < Nel

D2
j Tr[Dj ] > Nel

. (34)

Essentially, the purification iterations replace the
eigensolve with a series of matrix multiplications. Such
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FIG. 9 Convergence of the error during density matrix pu-
rification versus purification iteration for an 8-atom Si unit
cell.

a replacement is in itself nothing unique, since methods
like the power method solve the eigenproblem by matrix
multiplication. However, what is significant about den-
sity matrix purification is that the process is so rapid.
Figure 9 shows the rapid convergence of the method for
an 8-atom Si unit cell.

Replacing an eigensolve operation with matrix multi-
plication can potentially provide a significant computa-
tional savings because matrix multiplication is an easy
operation to take advantage of parallelism and matrix
sparsity. Figure 10 shows that this potential savings
can in fact be achieved with modest numbers of pro-
cessors. The purification results (blue) are roughly six
times slower than the ScaLAPACK PDSYEV eigensolver
(green) for a single processor. However, the paralleliza-
tion is much faster, so that on 32 processors the speeds
are roughly equivalent.

B. Future Directions for Increasing the Speed of DFT

Density matrix purification approaches can outperform
dense eigensolvers provided there is parallelism or spar-
sity that can be taken advantage of. Our investigations
to date have used only the parallelism, and have demon-
strated that it is possible to perform as well as the dense
ScaLAPACK approaches with enough processors. In the
remaining time on this project we plan to implement our
purification approaches using the Sandia Trilinos (51)
framework.

We need to be able to do matrix multiplies of the form

C = AB. (35)

Trilinos uses a compressed row storage (CRS) format for
sparse matrices, and, for example, considers the sparsity

FIG. 10 Comparison of density matrix purification (blue) to
the Scalapack routine PDSYEV (green) on the Red Squall
parallel computer.

graphs of matrices A and B to determine which elements
of C need be computed.

In DFT software it is often more useful to use block
compressed row storage (BCRS) instead of CRS. This is
because each atom leads to 10 basis functions, and when
two atoms are a long distance apart, the entire 10 × 10
matrix block containing elements from those two atoms
are typically zero. Thus, by using atom-atom distances
we can often determine which blocks are zero or nonzero
before computing the elements.

Trilinos has the capability to use variable block row
storage (VBR), which is ideal for our uses because it can
even consider cases where different atoms have different
numbers of basis functions (and thus different-sized ma-
trix blocks).

Because Trilinos does not implement matrix multipli-
cation between VBR matrices, we plan to extend the
Epetra module to include this functionality. Much of the
graph manipulation can be taken directly from the CRS
graphs, except now the graphs refer to entire blocks in-
stead of points.

Once we have successfully implemented VBR matrix
multiplication, we plan to exploit several other character-
istics of our particular problem to achieve better perfor-
mance. First, we typically require only a matrix square,

C = AA (36)

rather than a general matrix multiply. Furthermore, our
matrices are typically real symmetric (or, in the worst
case, complex Hermetian), which means we can perform
matrix multiplies of the forms

C = AT A (37)

C = AAT (38)
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when it allows communications to be reduced. We an-
ticipate that this will result in very high performance for
our density matrix purification approach.

V. INCREASING THE RANGE OF DFT

A. Gibbs Ensemble Monte Carlo Approaches With DFT
Energies

Elemental metal vapor-liquid coexistence curves (VL-
CCs) are difficult to obtain via experiment due to the ex-
tremely high temperatures required. Consequently data
is available only for a handful of the low melting point
elements, yet FEM simulations of manufacturing pro-
cesses like laser welding sensitively depend on this mate-
rial property information. Gibbs Ensemble Monte Carlo
molecular simulations are a proven method for determin-
ing VLCCs for small organic molecules and theoretically
are an ideal technique for determining atomic metal VL-
CCs. It is currently unknown whether existing functional
forms and parameterizations (force fields) that are fit to
reproduce metallic solid and metallic liquid phase data
will be appropriate for describing coexistence between a
metallic liquid phase and an insulating vapor phase. To
meet the need of the manufacturing simulations and cope
with the technical challenge, we are pursuing a hybrid
DFT-Gibbs MC program to compute the VLCCs using
quantum mechanical energies.

B. Gaussian-based Methods for High-Pressure Systems

Gaussian basis sets have many advantages for materi-
als chemistry: they provide a very compact description
of the electronic degrees of freedom, because they cen-
ter their variations on regions in which chemical bonding
changes most rapidly. However, one disadvantage is that
Gaussian basis sets are not orthogonal: two basis func-
tions χµ and χν typically have nonzero overlap:

Sµν =
∫
χµ(r)χν(r)dr. (39)

This nonzero overlap means that the Hamiltonian solu-
tion step in Figure 1 is, in fact, a generalized eigenprob-
lem

HC = SCΛ (40)

rather than the regular eigenproblem shown in eq (5).
The generalized eigenproblem is typically solved using a
Cholesky decomposition of the overlap matrix S, as part
of, for example, the LAPACK routine DSYGV.

However, in high-pressure systems the overlap matrix
S contains small eigenvalues, making the Cholesky de-
composition unstable, and producing artifact states in
the spectrum of states from eq (40). The solution we
have implemented to this problems involves a Canonical

FIG. 11 Results of the Quest high-pressure solver: (top)
Overlap spectrum for molecular hydrogen at 0, 10, 30 GPa.
The red curve shows the spectrum of the eigenvalue of the S
matrix, and the blue line denotes the cutoff value of 10−5 used
in the Canonical Orthogonalization. (bottom) Corresponding
eigenvalues of the H matrix: There are no artifact states at
0 GPa, as shown by the fact that the corrected curve (green)
have the same values as the uncorrected curve (blue). As the
pressure rises to 10 GPa these states start to appear, as shown
by the difference between the corrected and uncorrected val-
ues. By 30 GPa the artifact states completely dominate the
higher ends of the spectrum. In all cases, these states are
removed by the Canonical Orthogonalization procedure; no
change is made to the spectrum by this procedure when arti-
fact states are not present.

Orthogonalization procedure that removes small eigen-
values from the overlap matrix, and, with them, the ar-
tifact states from the spectrum.

We first compute the eigen-decomposition of the over-
lap matrix

SU = AU (41)

and then compute a transformation matrix X whose i-th
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column is given by

Xi = Ui/
√
ai (42)

only for eigenvalues ai > ε, with ε a cutoff typically in
the range 10−7–10−5. If we define

C = XC′ (43)

H′ = XT HT (44)

we can rewrite eq (40) as

HXC′ = SXC′Λ (45)

H′C′ = ΛC′ (46)

which is now transformed into a regular eigenproblem in
an orthogonal basis free of the artifact states.

Figure 11 shows the result of this transformation on
a molecular hydrogen crystal at differing pressures. The
top figures show the spectra of the overlap matrix S,
showing that the smallest eigenvalue gets increasingly
smaller as the pressure increases. The horizontal line
shows the cutoff value used by the Canonical Orthogo-
nalization algorithm. The bottom figures show the corre-
sponding spectra of the Hamiltonian matrices H′. Here,
the blue curves show the spectra that contain the arti-
fact states, which are not present at low pressures but
begin to dominate the spectrum as the pressure is raised.
In contrast, the green curves show the correct spectrum
successfully removing the artifact states.

This purification step allows the advantages of the
Gaussian basis sets (small overall size coupled with high
accuracy because the degrees of freedom are centered at
the chemical bond regions) may be used for high pressure
simulations.

C. DFT Molecular Dynamics

Classical atomistic force fields replace the DFT equa-
tions, which are functions of the electron density, with
functions of the atoms alone, effectively “integrating”
over the electronic degrees of freedom. In some cases this
is an effective substitution. Protein docking, for example,
appears to be quite well-described by these classical force
fields. However, for more complicated systems, and, in
particular, anytime chemistry is occurring, classical force
fields are suspect at best.

We have therefore implemented molecular dynamics in
the Quest DFT program. This Quest-MD approach uses
the quantum mechanical forces computed on each atom
to propagate the atoms according to Newtonian dynam-
ics. Such an approach allows complicated behavior like
radiation-induced substitution or vacancy relaxation in
Silicon, or pressure-induced metallization of molecular
hydrogen, to be computed using accurate DFT function-
als.

We have implemented several different MD integration
schemes, including ones that maintain constant energy
and constant temperature. This capability has already
been released to the Quest users.

D. Local Coordinate Projection Methods for DFT

When a DFT geometry optimization run needs a large
number of iterations to converge, it is often due to the
continuing motion of a few atoms in the system. The
problem is that the Cartesian coordinate system is some-
times not an efficient representation for some local re-
gions. There are a number of existing schemes for gener-
ating internal coordinates for all of the atoms in periodic
systems, but they are, in general, costly and complicated.
These methods can be mathematically elegant, but in
truth, we only need to improve the coordinate system for
the problematic atoms, rather than the whole system.

We approach this problem by projecting the forces of
selected atoms onto local coordinates that are more ap-
propriate. For example, for bridging atoms (2-fold coor-
dinated) we use a cylindrical coordinate system. The pri-
mary advantage is a separation of the stiffer bond mode
from rotational motions. In the original cartesian repre-
sentation, these motions are usually coupled, resulting in
slower convergence.

This method only does the projection for selected
atoms, or groups of atoms, thus avoiding the unnecssarily
complex and costly iterative transformation/back trans-
formation of full periodic projection schemes.

In its current implementation, without full tuning, the
cylindrical projection results in a factor of 2 decrease in
the number of steps required for convergence.

E. Future Directions for Increasing the Range of DFT

Our focus for the remainder of the CSRF project for
increasing the range of DFT will be on the hybrid Gibbs
MC-DFT approaches. During the first 18 months of this
project we have rewritten parts of Quest so that the pro-
gram may now be called as a subroutine from the Towhee
MC program. Because of the vastly greater resources re-
quired for DFT as opposed to classical force fields, we are
using the task parallel version of Quest for even the proof-
of-concept calculations. We are currently in the process
of simulating liquid densities of Si using the hybrid code,
which is the first step to computing the VLCCs.
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